The Research Diagnostic Criteria for Temporomandibular Disorders. VI: Future Directions

Gary C. Anderson, DDS, MS
Associate Professor
Department of Diagnostic and Biological Sciences
School of Dentistry
University of Minnesota
Minneapolis, Minnesota

Yoly M. Gonzalez, DDS, MS
Assistant Professor

Richard Ohrbach, DDS, PhD
Associate Professor
Department of Oral Diagnostic Sciences
School of Dental Medicine
University at Buffalo
Buffalo, New York

Edmond L. Truelove, DDS, MSD
Professor

Earl Sommers, DDS, MSD
Clinical Associate Professor
Department of Oral Medicine,
School of Dentistry
University of Washington
Seattle, Washington

John O. Look, DDS, PhD, MPH
Senior Research Associate,

Eric L. Schiffman, DDS, MS
Associate Professor
School of Dentistry
University of Minnesota
Minneapolis, Minnesota

Correspondence to:
Gary C. Anderson, DDS, MS
Associate Professor
University of Minnesota School of Dentistry
Department of Diagnostic and Biological Sciences
MHST Rm 9-470, 515 Delaware Street SE
Minneapolis, MN 55455
Fax: 612-626-2654
Email: ander018@umn.edu

The Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) Validation Project has provided the first comprehensive assessment of reliability and validity of the original Axis I and II. In addition, Axis I of the RDC/TMD was revised with estimates of reliability and validity. These findings are reported in previous papers. Further revisions for Axis I and II are presented for consideration by the TMD research and clinical communities. Potential Axis I revisions include addressing concerns with orofacial pain differential diagnosis and changes in nomenclature in an attempt to provide improved consistency with other musculoskeletal diagnostic systems. In addition, expansion of the RDC/TMD to include the less common TMD conditions and disorders would make it more comprehensive and clinically useful. The original standards for diagnostic sensitivity (≤ 0.70) and specificity (≤ 0.95) should be reconsidered to reflect changes in the field since the RDC/TMD was published in 1992. Pertaining to Axis II, current recommendations for all chronic pain conditions include standardized instruments and expansion of the domains assessed. In addition there is need for improved clinical efficiency of Axis II instruments and for exploring methods to better integrate Axis I and II in clinical settings.

Key words: clinical utility, diagnostic criteria, nomenclature, research, temporomandibular disorders

Since the American Dental Association’s president’s conference on temporomandibular disorders (TMD) in 1983, every major forum on this topic has highlighted the need for a reliable and valid diagnostic classification system to identify TMD cases, including specific subtypes. In particular, the US National Institutes of Health (NIH) Technology Assessment Conference Statement on the Management of Temporomandibular Disorders released in 1996 articulated the need for epidemiological and experimental studies to determine the etiologic mechanisms of and risk factors for TMD. Results from such studies would provide the basis for an etiology-based diagnostic classification system necessary to best facilitate clinical research leading to improved management and treatments for these disorders.

The Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) provided an important first step towards an etiology-based system. This symptom-based system provides well-defined operational definitions to distinguish TMD cases...
from controls, as well as to diagnose specific TMD subtypes. The RDC/TMD has been used in many epidemiologic and clinical studies of TMD.

The RDC/TMD Validation Project reported in the preceding five articles in this series of articles has provided the first comprehensive and rigorous assessment of the RDC/TMD reliability and validity, has considered additional clinical measures, has presented recommendations for a revised RDC/TMD, including diagnostic algorithms, and has also provided preliminary estimates of the revision’s reliability and validity.7–11 It is hoped that these revised algorithms will better support studies of the natural histories, etiologies, and mechanisms of specific TMD, as well as clinical trials of specific management strategies, as these are all steps necessary to the evolution of an etiology-based TMD diagnostic system. In the interim, it is expected that this revised diagnostic classification will also benefit patient care.

The findings from this Project have also led the authors to consider further revision of both Axis I (clinical TMD conditions) and Axis II (pain-related disability and psychological status) assessments. However, they feel that such changes are beyond the scope of the project and require broader input from the TMD clinical, academic, and research communities. This article outlines issues specific to each axis and broader concerns for future clinical research on TMD.

Axis I

Issues related to Axis I include concerns with orofacial pain differential diagnosis, TMD nomenclature, the range and scope of conditions and disorders included in the Axis I taxonomy, and the appropriate standards for acceptable diagnostic sensitivity and specificity in future investigations.

Differentiating TMD from Other Pain Conditions

Distinguishing TMD pain from that of other pain conditions, which may have associated referred pain, hyperalgesia, allodynia and central sensitization presenting in the masticatory region is difficult using the RDC/TMD. In part, the revised RDC/TMD II shares this limitation with the original, as it was derived and tested using a sample designed to assess the ability of the test to distinguish subjects with varied TMD from normal subjects. The scope of the study required an assessment of the more common disorders described in the original RDC/TMD and therefore the sample was heavily weighted toward these conditions. This is the first research question posed by the Standards for the Reporting of Diagnostic Accuracy (STARD) statement.12 The STARD statement consists of a checklist of 25 items and recommends the use of a flow diagram which describes the design of the study and the flow of patients. [Au: Change OK?] The second phase recommended by STARD is to answer the question, “Are patients with specific test results more likely to have the target disorder than similar patients with other test results?” The final answer to the second phase STARD question will require testing in a broader sample with TMD and the less common regional pain conditions. This will also require validated criteria for these other pain conditions.

For the present, the authors’ recommendation is that the revised RDC/TMD be used in clinical and research settings after other orofacial pain conditions, including odontogenic sources, have been ruled out. This is consistent with other classification systems such as the ICHD-2 [Au: Please define ICHD-2] for headaches that arrives at a primary headache diagnosis only after history and physical examination do not suggest any other disorder.13 The inclusion and exclusion criteria for this project, designed to rule out co-morbid conditions, will be useful to this task.7 It was previously reported from that the inclusion of items assessing pain with jaw function or movement did not add substantially to the diagnostic accuracy of the revised RDC/TMD in this sample and were not added to the proposed revision (see the fifth paper in the series).11 However, it is very possible that questions regarding the effect of jaw function and movement on pain may be useful in distinguishing TMD from other orofacial pain conditions. It has also been recognized that a “Comprehensive Pain Description” may be useful.14 Past efforts using the McGill Pain Questionnaire, also administered as part of the RDC/TMD Validation Project, have suggested some value in distinguishing some orofacial pain conditions such as trigeminal neuralgia.15,16 This data will be analyzed in the future.

Nomenclature

General agreement within the health-care professions regarding diagnostic nomenclature is important to facilitate communication among clinicians and clinical scientists. It is the authors’ belief that the field of TMD would benefit from broader clin-
ical use of the RDC/TMD. It has been suggested that dropping the word “research” from the title may encourage broader use by clinicians, ie, “the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD).”

In addition, diagnostic nomenclature has important implications for how patients perceive their problems. As nomenclature changes were deemed beyond the scope of this project, the revised RDC/TMD Axis I uses that of the original RDC/TMD Axis I: Clinical TMD Conditions. However, it is recognized that the practicing communities of dentistry and medicine have used other terms for these musculoskeletal conditions. We present here other options for consideration.

Group I: Muscle Disorders. Since 1996, the guidelines of the American Academy of Orofacial Pain (AAOP) have included a category of “myalgia,” reserved for nonspecific pain of masticatory muscles not meeting specific criteria for “myofascial pain” and other jaw muscle disorders. Although trigger points have been described as a criterion for “myofascial pain” by the AAOP and others, reliability in their identification has been limited to $\kappa = 0.15–0.50$ and even the definition of the phenomenon has not been agreed upon. It would seem reasonable to consider using “myofascial pain” to designate the presence of muscle pain with clinically demonstrated referral (with or without palpable trigger points) and use the term “myalgia” to designate muscle pain without referral. We did collect data on referral patterns elicited with palpation. However, although it has been used in other publications, “myalgia” has not seen broad usage in either dentistry or medicine.

Group II: Disc Displacement. In the RDC/TMD Validation Project studies, imaging revealed that approximately 30% of the normal participants in the study sample had disc displacements with reduction, despite no evident clinical signs or symptoms of the condition. This finding is consistent with other reports in the TMD literature. However, 11% of all disc displacements were categorized as disc displacement with reduction with transient limited opening (intermittent closed locking), and 10% were disc displacement without reduction with limited opening. These are stages of disc displacement with obvious impact on masticatory function. In summary, these findings characterize disc displacements with widely varied clinical presentations, from clinically insignificant to important.

An “identifier” or a diagnostic term for those disc displacements that appear to be clinically significant based on functional and mechanical impact would have clinical utility. A term used in the orthopedic, radiologic, and TMD literature is “internal derangement,” defined as “an intra-articular mechanical disturbance which interferes with a joint’s smooth action.” This term has also been used in the practice guidelines of the American Association of Oral and Maxillofacial Surgeons. The term “internal derangement” could be used in reference to stages of this disorder when disc position has apparent functional and mechanical consequences, including significant deviation with opening, locking, or limited opening. Those disc displacements “with intermittent or transient (closed) locking” and those “without reduction with limited opening” would also be considered “disc displacement” without clinical consequence. This designation is particularly appropriate in light of the “normal” clinical presentation of this stage of disc displacement.

Group III: Arthralgia, Arthritis, Arthrosis. This diagnostic grouping includes the term “arthralgia” for clinical temporomandibular joint (TMJ) pain. The AAOP has instead used “capsulitis” and “synovitis” for TMJ pain. The rheumatologic literature uses the term “arthritis” for clinically evident joint pain with inflammation or swelling. At this time, “capsulitis” and “synovitis” cannot be distinguished with any clinical test. Use of the terminology “arthritis” for TMJ inflammation with coincident joint pain would provide a parallel with medicine. However, this project’s findings suggest that clinical signs of inflammation other than joint pain to palpation and loss of function, eg, heat, erythema and swelling, are rarely seen in the TMJ.

The medical literature in the United States commonly uses the term “osteoarthritis,” but not “osteoarthrosis.” Within the context of the RDC/TMD, the two terms are used to distinguish degenerative changes with and without pain, respectively. An alternative to “osteoarthritis/osteoarthrosis” is “degenerative joint disease,” another commonly used term in both the dental and medical literatures. As this term does not imply the presence or absence of joint pain, it could be used with a concurrent diagnosis of “arthralgia” when pain is present. This would be parallel to the current RDC/TMD convention in the case of joint pain with Group II: Disc Displacement, which must include a concurrent arthralgia (IIIa) diagnosis when joint pain is present.
Range and Scope of Conditions Included in the Axis I Taxonomy

An inherent tension exists between research diagnostic systems with a primary goal to be reliable and valid at the expense of being relatively restrictive in scope versus clinical diagnostic systems with a primary goal to be inclusive at the expense of increased reliance on clinical judgment. This tension also exists between the RDC/TMD and other clinical diagnostic evaluations and taxonomies for TMDs.32,33 The original RDC/TMD did not provide diagnostic criteria for many of the less common masticatory muscle or TMJ disorders; the goal of the RDC/TMD was to provide solid assessment and diagnostic methods for the most common TMD conditions to serve as a foundation for subsequent expansion. Because the less common TMD conditions occur at a strikingly lower prevalence compared to the common ones, it was similarly beyond the scope of this project to assess all of the less common TMD conditions. However, there was an adequate number of participants to assess seven additional conditions, including myofascial pain with referral, temporalis tendinitis, disc displacement with reduction with transient limited opening (intermittent locking), TMJ subluxation/luxation, and three categories of tension-type headache with pericranial muscle tenderness. The tension-type headaches were classified using the International Headache Society criteria with the addition of temporalis muscle tenderness.34 This approach would allow systematic investigation of headaches which may be jaw-related. Data to support these seven TMD diagnoses will be reported in the future.

These additional disorders would expand the RDC/TMD Axis I to 12 clinical TMD conditions, as well as three types of tension-type headache. “Myofascial pain with referral” could be designated Ic and “temporalis tendinitis” designated Id in Group I: Muscle Disorders. “Disc displacement with reduction with transient limited opening” could be classified an “internal derangement” [Au: This is inconsistent with Iic in Table 1, Please reconcile] and included in Group II: Disc Displacements. “Subluxation/luxation,” meaning wide-open joint dislocation, could constitute a new diagnostic grouping, Group IV: Temporomandibular Joint Hypermobility. Tension-type headache with pericranial muscle tenderness could provide the basis for an additional grouping, Group V: Tension-type Headache with Temporalis Muscle Tenderness (see Table 1).
Standards for Diagnostic Sensitivity and Specificity in Future Investigations

The original RDC/TMD published in 1992 defined an acceptable threshold for diagnostic validity as a sensitivity level of at least 0.70 and specificity greater than 0.95. The rationale for the high specificity and relatively low sensitivity was that the common TMD conditions are not associated with mortality and “…can potentially have a high cost of treatment if carried into reconstructive, orthognathic or orthodontic interventions.” Such interventions were treatments in common use at that time. In addition, the effect of the low prevalence of TMD on sensitivity and specificity was considered in setting the threshold. In general, the standard was an attempt to avoid false-positive diagnoses, ie, overdiagnosis. These diagnostic concerns also led to the strict inclusion criteria of the original RDC/TMD. As such, each diagnosis was a construct defined by strict operationalization. This strict operationalization was essential to that seminal stage of criteria development, and it paralleled the methodology used to establish taxonomic order for the diagnosis of complex, subjective mental-health disorders.

The advantage of strict inclusion criteria is high specificity, that is, few noncases being diagnosed as cases. The disadvantage is that borderline cases are more likely to be misclassified as normal. A sensitivity level of 0.70 is associated with a false-negative diagnosis rate of 30%, which can be problematic. Despite the low mortality of TMD, morbidity can be high, with some individuals developing chronic, persistent conditions. “Missed” cases may have consequences over time.

In the years since the RDC/TMD was first presented, low-cost reversible treatments have come to typify the vast majority of clinical care in the field. Numerous studies have demonstrated that patient education, self-care, medications, jaw exercises, and splints can suffice for most TMD patients. These treatments have much lower risk clinically and are more economical than many of those used in the past. These two factors, current use of more conservative care and the shortcomings of reduced standards for sensitivity, suggest a possible need for increased sensitivity of the RDC/TMD at the expense of some loss in specificity.

Several cutoff points in the criteria measures with their corresponding sensitivity and specificity could be considered for different applications and settings. This is described in the recent STARD statement regarding the reporting of studies of diagnostic accuracy. For example a randomized trial dependent on a homogenous test group could use a cutoff point with lower sensitivity and higher specificity in contrast to the clinical applications described above. However, the morbidity and expense of ensuing treatments should also be considered when false positives and unnecessary treatment is burdensome or harmful to the patient. In conclusion, validation of a diagnostic instrument is an ongoing process and is dependent on the purpose for which it is used.

Axis II

Issues related to Axis II concern the number and character of the constructs that constitute Axis II, improvement in efficiency of screening instruments to make them more acceptable for routine clinical use, interpretation of elevated scores from the non-specific physical symptoms scale in pain patients, and integration of Axis I and Axis II information as a regular standard of care for the diagnosis, prognosis, and treatment of TMDs. Future efforts to refine Axis II measurement should be based on other ongoing work regarding the diagnosis and management of all chronic pain conditions.

Number and Character of Axis II Constructs

The assessment of psychosocial dysfunction with the depression scale in Axis II appears to be a critically important aspect of Axis II; simultaneous with assessing distress, the potential for self-harm is also assessed. The low specificity, however, of the depression screener indicates that further work is needed to improve screener efficiency. Additionally, inclusion of other scales for other purposes into the formal Axis II structure needs to be considered.

A significant problem associated with observational and experimental studies in the TMD field has been the lack of standardized outcome measures, which has prevented meaningful comparisons among most TMD clinical trials. This methodological problem has also been an issue for trials examining other chronic pain conditions. This issue was addressed recently with the publication of the Initiative on Methods, Measurement and Pain Assessment in Clinical Trials (IMMPACT). IMMPACT developed consensus recommendations for the use of specific outcome measures for core assessment in clinical trials for all chronic pain conditions. These core domains
are (1) pain assessment; (2) physical functioning; (3) emotional functioning; (4) participant ratings of global improvement and satisfaction with treatment; (5) adverse events; and (6) participant disposition. These recommendations lead to constructs that should be considered for inclusion in future revisions of RDC/TMD Axis II; measures suitable to address baseline status for a clinical trial (per IMMPACT recommendations) might also be equally suitable for the clinician to use for routine assessment of overall patient functioning. The challenge would be to design Axis II such that more comprehensive measurement does not occur at the expense of retaining an efficient screener for psychosocial dysfunction.

Some of the IMMPACT recommendations were already met by the original core constructs of the RDC/TMD Axis II. This project has demonstrated adequate reliability and validity of these Axis II constructs in a TMD setting. The original purpose of Axis II was to act as a concise and efficient screener for identifying individuals at risk for behavioral and psychosocial factors that would impact disease progression and treatment response. Nevertheless, it is suggested that the additions to Axis II as recommended by IMMPACT would improve assessment of baseline status, progression, and treatment response. Furthermore, adoption of the IMMPACT recommendations for the Axis II assessment would allow for standardization of outcome measures and comparison of TMD treatment outcomes with those of other chronic pain conditions.

The IMMPACT also recommended the use of “disease-specific” outcome measures. For TMD, this could include assessment of self-reported mandibular function. Axis II assessment may also benefit from the incorporation of additional tests for assessing constructs not included in the IMMPACT recommendations. Among these are the assessment of anxiety, stress, sleep disturbance, and quality of life, all of which have received recent attention in the chronic pain literature. In summary, these changes would define a broader role for Axis II in the assessment of pain and biobehavioral status.

Table 2 Proposed Outline for an Expanded Axis II: Pain and Biobehavioral Status

<table>
<thead>
<tr>
<th>Domain</th>
<th>Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 General Screeners</td>
<td></td>
</tr>
<tr>
<td>2.1.1 Emotion: Depression</td>
<td>(Symptom Checklist 90-Revised [SCL-90-R] derived)</td>
</tr>
<tr>
<td>2.1.2 Physical Functioning: Pain-related Disability</td>
<td>(Graded Chronic Pain Scale [GCPS])</td>
</tr>
<tr>
<td>2.1.3 Comorbid Symptoms: Nonspecific physical symptoms</td>
<td>(SCL-90-R derived)</td>
</tr>
<tr>
<td>2.1.4 Oral Behaviors Checklist</td>
<td></td>
</tr>
<tr>
<td>2.2 Pain</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Pain Intensity: Characteristic Pain Intensity</td>
<td>(from GCPS)</td>
</tr>
<tr>
<td>2.2.2 Pain Affect: from Short-Form McGill Pain Questionnaire-Revised</td>
<td>(SF-MPQ-R)</td>
</tr>
<tr>
<td>2.2.3 Temporal Patterning of Pain: instrument to be developed</td>
<td></td>
</tr>
<tr>
<td>2.3 Physical Functioning</td>
<td></td>
</tr>
<tr>
<td>2.3.1 Disease-specific Functional Limitation: Jaw Functional Limitation Scale</td>
<td></td>
</tr>
<tr>
<td>2.3.2 Oral Health-related Quality of Life: Oral Health Impact Profile</td>
<td></td>
</tr>
<tr>
<td>2.3.3 Health-related Quality of Life: Short Form</td>
<td>(SF)-12 (or SF-36)</td>
</tr>
<tr>
<td>2.3.4 Sleep: Pittsburgh Sleep Quality Index</td>
<td></td>
</tr>
<tr>
<td>2.4 Emotional Functioning</td>
<td></td>
</tr>
<tr>
<td>2.4.1 Anxiety, Anger (SCL-90-R derived)</td>
<td></td>
</tr>
<tr>
<td>2.4.2 General Emotions: Profile of Mood States</td>
<td></td>
</tr>
<tr>
<td>2.5 Global Status Rating</td>
<td></td>
</tr>
<tr>
<td>2.5.1 Patient Global Impression of Change</td>
<td></td>
</tr>
</tbody>
</table>

The Axis II instruments are designed to screen for biobehavioral status and pain. They are not diagnostic instruments. Constructs and/or instruments proposed as additions or modifications to the original RDC/TMD are italicized. A designates instruments validated for TMD by the RDC/TMD Validation Project; B designates measurements with data analysis for TMD in progress; C designates instruments validated in other settings; D designates proposed instruments fulfilling the recommendations of IMMPACT.
Improvements in Efficiency of Axis II Instruments to Enhance Their Acceptability for Routine Clinical Use

A need for improved efficiency of the Axis II instruments is necessary to enhance their utilization by the practicing and research communities. If Axis II cannot be readily and easily applied, it will not be used. Improved efficiency will also allow for the possibility of enhancing the scope of Axis II as both a screening tool and a monitoring tool.

One aspect of the current NIH Roadmap is the multi-site Patient-Reported Outcomes Measurement Information System (PROMIS), in which one goal is to improve validity simultaneously with reducing length of typical self-report. This should also be a goal for future Axis II development. The replacement of the original function checklist of Axis II with an instrument developed using the same tools as PROMIS is consistent with this goal.

For the present, to facilitate increased utilization in clinical settings, the use of at least three clinical screening instruments as well as characteristic pain intensity by all clinicians and researchers would allow better characterization of our patients and research cohorts (see 2.1 General Screeners [2.1.1-2.1.3] and 2.2.1 Pain Intensity; Table 2). More importantly, the use of a common nomenclature and assessment beyond clinical diagnoses would improve our ability to better serve and care for those with TMD and chronic pain conditions.

Supplemental Domains of Assessment

The relatively low prevalence of somatoform disorders in their pure presentation, along with the marginal validity for the nonspecific physical symptoms scale (termed “somatization” in the Symptom CheckList-90 [SCL-90]) in the identification of modified somatoform disorders might lead one to regard a physical symptom checklist as largely irrelevant for assessing individuals with chronic TMD pain. However, the following clinically useful interpretations are possible from the RDC/TMD nonspecific physical symptoms scale: the presence of widespread pain is a strong predictor of additional pain disorders; central nervous system dysregulation in chronic pain takes the form of increased somatosensory reactivity to any stimuli; and preoccupation with illness and the sick role is a strong factor that retards therapeutic progress. Further investigations regarding the kind of symptom reporting that the nonspecific physical symptoms scale provides are needed before the scale can be more reliably interpreted.

Integration of Axis I and Axis II Information as a Regular Standard of Care

Despite some clinical treatment studies that have focused on the role of psychosocial status in treatment outcome, the application of the RDC/TMD Axis II in day-to-day clinical decision-making in the practicing community has not been realized. Although the Axis II concepts are helpful in determining prognosis, the contribution of Axis I diagnostic status and its interaction with Axis II and their effects on chronicity and long-term disability has yet to be determined. Further studies need to more carefully examine, in particular, physical pathology over time associated with the TMJ and how that pathology interacts with behavior to produce disability or adaptation by the individual patient.

Conclusions

We recommend an international symposium be held to consider the issues enumerated here, develop consensus where possible, and further define the future of research in the clinical investigation of TMD. It is important that the process consider the classification systems of clinically-based professional organizations in order to foster the development of a diagnostic system useful to both the research and clinical communities. The refinement and evolution of the RDC/TMD should support ongoing investigations of TMD eti-
Table 3 RDC/TMD Supplemental Domains

Data regarding these domains were collected as part of the RDC/TMD Validation Project and are being analyzed. These domains are potential markers, outcomes, or contributing factors of TMD.

<table>
<thead>
<tr>
<th>Quantitative sensory testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Pressure pain threshold algometry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Orthopedic tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Jaw compression, traction, and translation</td>
</tr>
<tr>
<td>• Static and dynamic resistance testing</td>
</tr>
<tr>
<td>• Clenching provocation tests: with and without interdental objects</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Occlusal features</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Structural occlusion</td>
</tr>
<tr>
<td>• Functional occlusion</td>
</tr>
</tbody>
</table>

ology and natural history, as well genetic effects on these conditions. Such work would facilitate experimental design and use of technology in future attempts to elucidate whether different TMD have different etiologies. These potential applications for the RDC/TMD warrant input from the broader community.

Finally, such a symposium should address the long-standing concerns with the designated collective term for these conditions, “temporomandibular disorders (TMD).” This nomenclature has been a problem since the introduction of the term “TMD” and continues to the present. In fact, the US National Institute of Dental and Craniofacial Research presently uses the term “temporomandibular muscle and joint disorders (TMJD)” on its web page regarding diseases and conditions. This nomenclature issue is important and worthy of broad consensus.

Acknowledgment

This study was supported by NIH/NIDCR U01-DE013331.

References